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Abstract. The aim of this note is to show that the cycle decomposition of elements
of the symmetric group admits a quite natural formulation in the framework of dual
Coxeter theory, allowing a generalization of it to the family of so-called parabolic quasi-
Coxeter elements of Coxeter groups (in the symmetric group every element is a parabolic
quasi-Coxeter element). We show that such an element admits an analogue of the cycle
decomposition. Elements which are not in this family still admit a generalized cycle
decomposition, but it is not unique in general.

Résumé. L'objectif de cette note consiste a expliquer en quoi la décomposition en
produit de cycles a supports disjoints des éléments du groupe symétrique admet une
formulation naturelle dans le contexte de la théorie de Coxeter duale, ce qui en permet
une généralisation a la famille des quasi-éléments de Coxeter paraboliques (cette famille
est le groupe tout entier lorsque celui-ci est un groupe symétrique). Nous démon-
trons qu'un tel élément admet une décomposition en cycles généralisée. Les éléments
n‘appartenant pas a cette famille admettent également une décomposition en cycles
généralisée, mais celle-ci n’est pas unique en général.
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1 Introduction

The cycle decomposition in the symmetric group is a powerful combinatorial tool to
study properties of permutations. On the other hand, the symmetric groups can be
realized as Coxeter groups. It is easy for example to determine the order of an element
from its cycle decomposition, hence even if we prefer to view the symmetric groups
as Coxeter groups it is sometimes useful to represent their elements as permutations
and make use of their unique cycle decomposition, rather than using Coxeter theoretic
representations of the elements as words in the simple generating set.

It therefore appears as natural to wonder whether the cycle decomposition admits
a natural generalization to Coxeter groups. However, when trying to define cycle de-
compositions in the symmetric group purely in terms of the classical Coxeter theoretic
data, one rapidly sees an obstruction towards such a generalization: considering a Cox-
eter system (W, S) of type A, (with W identified with &,,11 and S with the set of simple
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transpositions) and an element w € W with cycle decomposition w = cic; - - - ¢k, the Cox-
eter length /s(w) of w is not equal in general to the sums of the lengths of the various
C;.

However, replacing the generating simple set S by the set T of all transpositions
and the classical length by the length function /7 on W with respect to T, one has that
(r(w) = Y5 1(c;). The set of transpositions forms a single conjugacy class. From a
Coxeter theoretic point of view, it is the set of reflections of W, i.e., the set of W-conjugates
of the elements of S. In particular the reflection length function {1 can be defined for an
arbitrary Coxeter group. There are deep motivations for the study of a (finite) reflection
group as a group generated by the set T of all its reflections instead of just the set S
of reflections through the walls of a chamber. This approach, nowadays called the dual
approach, has been a very active field of research in the last fifteen years (see for instance
[4,8,1,12,13]).

The above basic observation on the reflection length of a permutation indicates that
the cycle decomposition has something which is dual in essence. Each cycle can be
thought of as a Coxeter element in an irreducible parabolic subgroup of W. From the
type A, picture, it therefore appears as natural to generalize a cycle decomposition as
a decomposition of an element w of Coxeter system (W, S) into a product of Coxeter
elements in irreducible reflection subgroups of W, which pairwise commute, and such
that the sum of their reflection lengths equals the reflection length of w. However, even
for finite W there are in general elements failing to admit such a decomposition. In order
to make it work, one has to relax the definition of Coxeter element to that of a quasi-
Coxeter element (in type A, both are equivalent). Namely, given w € W and denoting
by Redr(w) the set of T-reduced expressions of w, that is, minimal length expressions
of w as product of reflections, we say that w € W is a parabolic quasi-Coxeter element if it
satisfies the following condition:

Condition 1.1. There exists (ty,tz,...,tx) € Redr(w) such that W' := (t,tp,..., 1) isa
parabolic subgroup of W.

If the parabolic subgroup is the whole group W then we just call w a quasi-Coxeter
element. This definition was given in [3, Definition 2.2(c)]. In type D, for instance, there
are quasi-Coxeter elements which fail to be Coxeter elements (that is, with no T-reduced
expression yielding a simple system for W). Quasi-Coxeter elements in finite Coxeter
groups were classified by Carter [9, Section 5] for finite Weyl groups. Carter associated
certain diagrams, called admissible diagrams, to conjugacy classes of elements in the finite
Weyl groups. Every diagram naturally gives a reflection subgroup of W and Carter
classified those diagrams for which the corresponding subgroup is the whole group W.
This situation precisely corresponds to the case of quasi-Coxeter elements (note that a
given conjugacy class can have several diagrams and that conversely distinct conjugacy
classes can have the same diagram - we refer the reader to [9, Section 7] for more details).
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The parabolic subgroup in the above Condition is unique in the sense that if another
reduced expression (41,42, - -.,qx) € Redr(w) generates a parabolic subgroup W” of W,
then W = W” (see Lemma 2.6). We therefore denote W’ by P(w). In this situation it is
easy to derive

Proposition 1.2 (Generalized cycle decomposition). Let (W, S) be a Coxeter system. Let w €
W satisfying Condition 1.1. There exists a (unique up to the order of the factors) decomposition
W= X1X3 - Xm, X; € W such that

1. xixj = xjx; foralli,j=1,...,m,
2. br(w) = Lr(x1) + Lr(x2) + -+ + L1 (xm),

3. Each x; admits a T-reduced expression generating an irreducible parabolic subgroup W; of
W and
P(w) =Wy X Wy X - -+ X Wy,

This statement is not entirely satisfying in the sense that we would like to state the
maximality condition given in point (3) only in terms of the factors x; and not in terms
of the parabolic subgroups. More precisely, we expect the x;’s to be indecomposable, that
is, to admit no nontrivial decomposition of the form u;v; with u;v; = v;u; and ¢7(x;) =
¢1(u;) + fr(v;). For finite groups at least this can be achieved (see Proposition 3.5)
yielding

Theorem 1.3 (Generalized cycle decomposition in finite Coxeter groups). Let (W, S) be
a finite Coxeter system. Let w € W satisfying Condition 1.1. There exists a (unique up to the
order of the factors) decomposition w = x1Xp - - - X, X; € W such that

1. xjxj = xjxl-for alli,j=1,...,m,
2. br(w) = lr(x1) +Lr(x2) + - + L1 (xm),
3. Each x; is indecomposable.

Theorem 1.3 is the analogue of the cycle decomposition for parabolic quasi-Coxeter
elements. In general there are elements in W failing to be parabolic quasi-Coxeter el-
ements, but the advantage of this definition is that such an element is always a quasi-
Coxeter element in a reflection subgroup (but this subgroup is never unique when W
is finite: in that case by Corollary 3.11 below these reflection subgroups are in bijection
with the number of Hurwitz orbits on Redr(w); by [3, Theorem 1.1] this number is one
precisely when w satisfies Condition 1.1).
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2 Coxeter groups and their parabolic subgroups

Let (W, S) be a (not necessarily finite) Coxeter system of rank n = |S|. We assume the
reader to be familiar with the general theory of Coxeter groups and refer to [6] or [11] for
basics on the topic. Let T = [J,cy wSw ™! be the set of reflections of W. Let £ : W — Z
be the reflection length, that is, for w € W the integer {1(w) is the smallest possible length
of an expression of w as product of reflections. We write <t for the absolute order on W,
that is, for u,v € W we set

u<ro < Lr(u) +r(u1o) = lr(v).

Given w € W, we denote by Redr(w) the set of T-reduced expressions of w, that is, the
set of minimal length expressions for w as products of reflections.

Definition 2.1. A subgroup W' C W is parabolic if it exists a subset S’ = {r1,72,...,1,} C
T and m < n such that (W, S’) is a Coxeter system and W' = (r1,12,...,"m).

The above definition, which is borrowed from [2], is more general than the usual
definition of parabolic subgroups as conjugates of subgroups generated by subsets of S.
In [3, 4.4 and 4.6] it is shown that the above definition is equivalent to the classical one
for finite and irreducible 2-spherical Coxeter groups. The example below shows that the
two definitions are not equivalent in general:

Example 2.2. Let W be a universal Coxeter group on three generators S = {s,f,u}, that
is, with no relation between distinct generators. Then S’ := {s,t,tut} C T is a simple
system for W, hence X := (s, tut) is parabolic. However, using the fact that elements
of W have a unique S-reduced expression (because W is universal) it is easy to check
that X is not conjugate to any of the three rank 2 standard parabolic subgroups of W.
Indeed, the set S’ of canonical generators of W’ is {s,tut}. If wW'w~=! = P for one of
the three rank 2 standard parabolic subgroup P above and some w € W, then it follows
from [10, Lemma 3.2] that the set of canonical generators of P (which are the two simple
reflections generating it) must be a conjugate of S’. Since W is a universal Coxeter group,
each element in W has a unique S-reduced decomposition, from which it follows easily
that the only simple reflection which is a conjugate of s is s itself and that xsx~! = s
for some x € W implies x € {e,s}. But x(tut)x~! is not simple for such a choice of x, a
contradiction. Note that for a universal Coxeter group of rank 2 (aka an infinite dihedral
group) the two definitions coincide.

Parabolic subgroups provide a family of reflection subgroups of W, that is, subgroups
generated by reflections. Any reflection subgroup W/ C W comes equipped with a
canonical structure of Coxeter group (see [10]), in particular it has a canonical set S’ of
Coxeter generators. Moreover by [10, Corollary 3.11 (ii)] the set Ref(W’) of W'-conjugates
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of S’ (the reflections of W') coincide with W' N T. The rank rank(W’) of W’ is defined to
be |S].
The following result will be useful:

Theorem 2.3 ([2, Theorem 1.4]). Let W' C W be a parabolic subgroup. Let w € W'. Then
Redy (w) = Redr(w), where T" = W' N T is the set of reflections of W'.

In this context it seems natural to us to conjecture the following:

Conjecture 2.4. Let w € W. Assume that there is (t1,tp,...,tr) € Redr(w) such that
W' := (,ty,...,t) is parabolic. Then for any (q1,92,...,q9x) € Redr(w) we have W' =

(91,92, -+, qx)-
Note that

Theorem 2.5 ([3], [2]). Conjecture 2.4 holds in the following cases:
1. When W is finite,

2. When w is a parabolic Coxeter element in W, that is, if it exists S" = {ry,72,...,1} C
T and m < n such that w = rry - - - 1y and S’ is a simple system for W.

Proof. Conjecture 2.4 for finite W is an immediate consequence of [3, Theorem 1.1]: there
it is shown that an element satisfies Condition 1.1 if and only if the Hurwitz action
(see Section 3.3 for the definition) is transitive on Redr(w); but this action leaves the
subgroup generated by the reflections in a T-reduced expression invariant. It also holds
for parabolic Coxeter elements since in that case the Hurwitz action is also transitive on
Redr(w) by [2, Theorem 1.3]. O

Lemma 2.6. Let w € W. Assume that (t1,t2,- -+ ,t), (91,92, - - -, qx) € Redr(w) are such that
both W' := (t1,to,...,tx) and W' := (g1, 9o, ..., qx) are parabolic. Then W' = W".

Proof. Since W' is parabolic, by Theorem 2.3 we have q; € W’ for all i, hence W/ C W'.
Reversing the roles of W and W we get W C W". O

The lemma above allows the following definition

Definition 2.7. Let w € W satisfying Condition 1.1. We denote by P(w) the parabolic
subgroup of W generated by any T-reduced decomposition of w generating a parabolic
subgroup. This is well-defined by Lemma 2.6.

It follows immediately from Theorem 2.3 that any parabolic subgroup P containing
w must contain P(w). We call P(w) the parabolic closure of w.

Lemma 2.8. Let W C W be a finitely generated reflection subgroup. Then there is a unique (up
to the order of the factors) decomposition W' = Wy x Wy X - - - X Wy where W1, Wy, ..., Wy are

irreducible reflection subgroups of W' and Ref(W) = UleRef(Wi).
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Proof. Let S’ be the canonical set of Coxeter generators of W’ (see [10]). By [10, Corol-
lary 3.11], S’ is finite and Uyep wS'w™! = W NT. If Ty, Ty,..., T} are the irreducible
components of the Coxeter graph of (W',S’), then W' = W; x Wy x -+ x Wy (where
W; is generated by the nodes of I';) and each W; is an irreducible reflection subgroup.
Now if there is another decomposition W = W x W, x -- - x W/, then all the reflections
in W/ must be included in W; for some j (otherwise irreducibility is not satisfied) and
vice-versa, implying uniqueness of the decomposition. O

3 Generalized cycle decompositions

3.1 Proof of Proposition 1.2

Proof of Proposition 1.2. Let (t1,t,...,t) € Redr(w) such that P := (t1,tp,..., 1) is
parabolic. By Lemma 2.6 we have P = P(w). It follows from the definition of a parabolic
subgroup that there is a (unique up to the order of the factors) factorization

P:W1><W2X"'me

where the W;’s are irreducible parabolic subgroups. Moreover we have k = rank(P) =
Y™ rank(W;) and Ref(P) = (J;_;Ref(W;). It follows that for each j = 1,...,k, there
exists j/ € {1,...,m} such that t; € Wy. This implies that we can transform the T-
reduced expression (t1,t2, ..., ty) by a sequence of commutations of adjacent letters into
a T-reduced expression (q1,...,q¢, 9,41, -+t -+ -+90,_ys- - -, qk) of W where

{%z---z%l—l} - Wl/' . 'l{qu_ll--'lqk} - Wm

Note that since the set {t1,..., tx} generates P we must have

<q1,...,qg1_1> = Wl/---r<qﬁm_1/"'/qk> = Wm

Setting o = 1 and {;, = k+ 1 we define x; :== qy._ gy, ,+1--q¢—1 foralli =1,...,
Note that since the W;’s are irreducible and parabolic we get (3). As (41,...4x)
Redr(w) is given by concatenating T-reduced expressions of the x;’s we have {1(w)
lr(x1) +Lr(x2) + - - - + r(xy) which shows (2). Since x; € W; for all i and P
W1 X Wy x - -+ X Wy, we have x;x; = x;x; for all i,j = 1,...,m, which shows (1).

It remains to show that the decomposition is unique up to the order of the factors.
Hence assume that w = yjy> - - - ¥,y is another decomposition of w satisfying the three
conditions of Proposition 1.2. By the third condition each of the y;’s has a reduced
expression generating an irreducible parabolic subgroup W/ = P(y;) of W and con-
catenating them yields a reduced expression generating P(w). By uniqueness of the
decomposition P(w) = Wy X --- x Wy, we must have m = m’ and there must exist a

3

I m
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permutation 7t € &, such that W] = W_; for all i. Up to reordering, we can therefore
assume that W/ = W; for all i. Since x = x1x2- - Xy = Y1Y2 - - - Ym it follows by unique-
ness of the decomposition of w as element of the direct product Wy x Wy x - - - x Wy, that
xj=y;foralli=1,...,m. ]

Remark 3.1. In type A, we recover the classical cycle decomposition. In that case each
element w satisfies Condition 1.1. The second condition in Proposition 1.2 follows from
[7, Lemma 2.2].

3.2 Finite Coxeter groups and their parabolic subgroups

This section is devoted to recalling well-known facts on parabolic subgroups of finite
Coxeter groups and their connexion with finite root systems. Most of what we present
here is covered in [6], though often in different notations. From now on we always
assume (W, S) to be finite.

Let (W, S) be finite, of rank n. Let ® be a root system for (W, S) in an n-dimensional
Euclidean space V with inner product (-,-). Let & C & be a positive system. Recall
that there is a one-to-one correspondence between T and @ which we denote by t — a;.
Let w € W and let

V¥ ={veV|w() =0}

be the subspace of V consisting of the fixed points under the action of w. The following
well-known result is due to Carter [9, Lemma 3]

Lemma 3.2 (Carter’s Lemma). Let ay, &y, ..., a1 € O Then {ay,, ay,, ..., ap } is linearly
independent if and only if L7(t1to - - - t) = k. In that case one has dim V12"t = n — k and
W' := (t1,tp, ..., ty) is a reflection subgroup of rank k of W.

The following will be useful (see [4, Lemma 1.2.1 (i)])
Lemma 3.3. Let x e W, t € T. Then t <t x < V* C Vi

Given w € W, there is an orthogonal decomposition V = V¥ & Mov(w) with respect
to (-, -), where Mov(w) := im(w — 1) (see for instance [1, Section 2.4]).

Recall that for finite Coxeter groups, Definition 2.1 is equivalent to the classical defini-
tion, that is, W' C W is parabolic if and only if W’ is a conjugate of a standard parabolic
subgroup W; of W, where for I C S we write W := (s | s € I). There is the follow-
ing result, characterizing parabolic subgroups of finite Coxeter groups as centralizers of
subspaces of V (which is a Corollary of [6, 3.3, Proposition 1]).

Proposition 3.4. Let P C W be a parabolic subgroup. Then
P=Fix(E):={x € W |x(v) =0, Yo € E}

for some subspace E C V. Conversely, given any subspace E C V, the subgroup Fix(E) is a
parabolic subgroup of W.
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In fact, the subspaces E in Proposition 3.4 can be chosen to be intersections of
reflection hyperplanes. Given linearly independent reflection hyperplanes V..., V;,
where t; € T,i = 1,...,k and setting w := t1t- - - t, it follows from Carter’s Lemma
(Lemma 3.2) that V¥ = N5, V., and dim(V¥) = n — {1(w) (see also [4, Lemma 1.2.1
(ii)]). It follows from the discussion above that P(w) = Fix(V%¥) and rank(P(w)) =
{1(w). Every parabolic subgroup is the parabolic closure of some (in general not uniquely
determined) element.

3.3 Hurwitz action and proof of Theorem 1.3

We now give a few properties of elements of finite Coxeter groups satisfying Condi-
tion 1.1 before proving Theorem 1.3. These elements were introduced in [3] and called
quasi-Coxeter elements.

Recall that for each w € W with ¢7(w) = k, there is an action of the k-strand Artin
braid group By on Redy(w) called the Hurwitz action, defined as follows. The Artin
generator o; € By acts by

o; - (tll sy ti—l/ til ti—l—ll ti+2/ sy tk) - (tll sy ti—lr titi—‘rlti/ ti/ ti—‘rZ/ ceey tk)

In [3, Theorem 1.1], it is shown that this action is transitive if and only if w satisfies
Condition 1.1. Since the reflection subgroup generated by the reflections from a reduced
expression is invariant under a Hurwitz move as above, this means that either every
T-reduced expression generates a parabolic subgroup (which by Lemma 2.6 is nothing
but P(w)) or no reduced expression does.

With the following Proposition (which requires the above mentioned result from [3]
for which we only have a case-by-case proof) it will be easy to derive a proof of Theo-
rem 1.3.

Proposition 3.5. Let (W, S) be a finite irreducible Coxeter system. Let x be a quasi-Coxeter
element in W. Then there is no nontrivial decomposition x = uv = vu such that u,v € W and

ET(X) = ET(u) + ET(U).

Proof. Assume that there is such a decomposition x = uv. For y € {u,v} define W, :=
(t € T|t <ry). We claim that in that case we have W = W, x W, and Ref(W) =
Ref(W,,)URef(W, ), contradicting the irreducibility of W.

Firstly we show that Mov(v) C V*. We have V* N VY C V", hence Mov(uv) C
Mov (1) + Mov(v). Since moreover {1(x) = ¢t(uv) = ¢1(u) + ¢7(v) by Carter’s Lemma
we have Mov(u) N Mov(v) = 0. Let a € Mov(v). Then since uv = vu we have u(a) €
Mov(v), hence u(a) —a € Mov(v) NMov(u) = 0. Hence a € V*, which shows the claimed
inclusion.
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Now if t € T is such that t <t u, then by Lemma 3.3 we have that Mov(v) C V* C V!
which implies that a; € V?. Using Lemma 3.3 again, we deduce that ¢ commutes with
any reflection t' € T such that ' <7 v.

Concatenating a T-reduced expression tqt; - - -t of u with a T-reduced expression
tia1tkan - - -ty of v we get a T-reduced expression tit; - - - t; of x. By the discussion above
we have tt' = t't for all t € {t1,tp,..., 1}, t' € {tri1, tkio, ..., tn} and any reflection
occurring in a T-reduced expression in the orbit B, - (t1,t2,...,t,) lies either in W, or
in W,. Since by [3, Theorem 1.1] there is a unique Hurwitz orbit on Redr(x), the set
{t1,t2,...,tn} generates W. Let t € T. Since a quasi-Coxeter element x has no nontrivial
fixed point in V we have that ¢t <7 x, hence t occurs in a reduced expression of Redr(x).
But there is only one orbit B, - (t1,t2,...,t) of B, on Redr(w). It follows that t € W, or
in t € W,. The claimed direct product decomposition follows. O

Proof of Theorem 1.3. The existence of the claimed decomposition w = x1x3 - - - xy; is given
by Propositions 1.2 and 3.5. It remains to show uniqueness. Assume that w = yjy2 - - - yy
is another such decomposition. For each i, choose a reduced expression # - - - t;i of y;.
Thanks to (2), concatenating these reduced expressions yields a reduced expression of

w. For a fixed i, all the t; are in P(w) by Theorem 2.3. It follows from Lemma 2.6 that

! lies in one of the parabolic factor W(i, j) of P(w), and indecomposability of y; forces
W(i,j) to depend only on i. Therefore we set W(i) := W(i,j) and note that y; € W(i).
But since the irreducible parabolic factors of P(w) are precisely the P(x;)’s, for each W(i)
there exists j such that W(i) = P(x;). It follows from the decomposition

P(w) = P(x1) x P(x2) X ... P(xm) (3.6)

and the uniqueness of the decomposition of w in the direct product (3.6) that each of
the x; can be written as a product of y;’s: more precisely, x; is the product of all those
yi’s such that W(i) = P(x;) (and for each j, there must be at least one y; such that
W(i) = P(x;) otherwise w would have two distinct decompositions in (3.6)). But by
indecomposability of x;, there can be at most one such y;, which concludes. O

3.4 Consequences

We conclude with some facts about elements for which Condition 1.1 fails. For such an
element w € W, by [3, Theorem 1.1] the Hurwitz operation on Redr(w) is not transitive.
Denote by #H(w) the set of orbits. For O € H(w), denote by (O) the reflection subgroup
generated by any T-reduced expression in O. This is well-defined since the Hurwitz
action leaves the subgroup generated by a T-reduced expression unchanged. Hence we
get the following:

Proposition 3.7. Let (W, S) be finite. Let w € W. For each O € H(w), the element w has a
unique generalized cycle decomposition in the sense of Theorem 1.3 in the Coxeter group (O).
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Proof. The reflection subgroup (O) is a Coxeter group. Denote by S’ its set of canonical
Coxeter generators. We have (see [10, Corollary 3.11 (ii)]) that

T :=(0)NnT= [J uSu'.
ue(0)

Hence w is a quasi-Coxeter element in ((O),S). Applying Theorem 1.3 to w viewed as
element of (O) we get the claim. O

Lemma 3.8. Let w € W. If 01,0, € H(w) with O1 # Oy, then (O1) # (Os).

Proof. Let (t1,tp,...,t;) € Oq. Then (t,t5,...,t) = (O1). Let S’ be the set of canonical
Coxeter generators of the reflection subgroup (O;). The Hurwitz operation is transitive
on Redr, (w) where Ty = TN (Oq) (see the proof of Proposition 3.7). If we have (O;) =
(O,), then in particular for (41,492,...,qx) € O we have q; € T; for all i since q; €
TN (O,) = Ty. This implies that (¢, t3,. .., t) and (91,92, - - ., gx) lie in the same Hurwitz
orbit since the Hurwitz operation is transitive on Redr, (w), a contradiction. N

Remark 3.9. Proposition 3.7 tells us that any w € W has a unique cycle decomposition
in any reflection subgroup generated by one of its T-reduced expressions. However
distinct such reflection subgroups, equivalently (by Lemma 3.8) distinct Hurwitz orbits
in ‘H(w) can yield the same decomposition of w: more precisely if x1,x, ..., X, is a cycle
decomposition in (O1) and y1, Y2, ...,y is a cycle decomposition in (O;) where O; and
O, are distinct elements in H (w), then it is possible that ¢ = m and

{x1,%0,.. ., xm} ={y1L,y2, - -, Ym}-

As an example consider W of type G, = I(6) with S = {s, t}. Then w = stst is a Coxeter

element in both irreducible reflection subgroups (s, tst) and (t,sts) of type A, hence its

cycle decomposition is the trivial decomposition x; = stst = y; in both subgroups.
However we always have

{P(x1)!, P(x2)",..., P(xm)'} # {P(y1)* P(y2)?, ..., P(ym)*},

where P(x;)! (respectively P(y;)?) is the parabolic closure of x; (respectively y;) in (O7)
(respectively (O,)). Indeed, the reflections in these subgroups have to generate the
parent group (Oq) (respectively (O;)) in which the cycle decomposition is considered
and they are distinct by Lemma 3.8. In the above example with W of type G, we have

P(x1)! = (s, tst) # P(y1)? = (t,sts).
Also note the following:

Lemma 3.10. Let w € W with {r(w) = k. Let W' C W be a reflection subgroup of W
containing w with set of reflections T = W' N T. Then {7(w) = {p(w).
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Proof. Since T" C T we must have {1(w) < ¢p(w). Assume that {/(w) = k' > k. Let
(t1,t2,...,tp) € Redp(w). Let i be minimal such that {r(f1tp---t;) # Cp(titp - ).
Then {r(tytp - - - t;) =i —2, bpi(tity- - - t;) = i. Let u = tytp - - - t;_1. By minimality of i we
have {1(u) = ¢p(u) = i — 1. In particular, we have t; <t u. The parabolic closure P(u)
of u therefore has rank i — 1 and contains ty,...,#_1 but also t;. But since (t1,...,fy)
is T'-reduced, the reflection subgroup W" = (t1,t5,...,t;) has rank i (as a reflection
subgroup of the Coxeter group W/, for instance by Lemma 3.2). But the reflections of
W' as a reflection subgroup of W' or W are the same, hence W also has rank i as a
reflection subgroup of W. Therefore W” cannot be included in P(u#) which has smaller
rank, a contradiction. O

Hence together with Lemma 3.8 we get

Corollary 3.11. For all w € W, there is a one-to-one correspondence between H(w) and reflec-
tion subgroups of W in which w is a quasi-Coxeter element, given by O — (O).

Example 3.12. Let W be of type D4 with S = {sg,s1, 52,53} where s, commutes with no
other simple reflection. Then the element

w = 51(525152) (525082)83

is a quasi-Coxeter element in W (see [3, Example 2.4]), but it is not a Coxeter element
(in the sense that it has no T-reduced expression yielding a simple system for W). It
follows from Proposition 3.5 that its cycle decomposition is the trivial decomposition
x; = w. Now W can be viewed as a reflection subgroup of a Coxeter group W of type
B,. In that case W is not parabolic in W, hence w has no reduced expression generating
a parabolic subgroup of W: indeed, if there was such a decomposition, then the Hurwitz
operation on the set of T-reduced expressions of w in W would be transitive by [3,
Theorem 1.1], hence each reduced expression would generate a parabolic subgroup, in
particular W would be parabolic in W. The element w has a unique generalized cycle
decomposition in W which is the one we gave above (since W is irreducible), but w can
also be realized as a Coxeter element in a (non irreducible) reflection subgroup W’ of
type By X By as follows: in the signed permutation model for the Weyl group W of type
By (see [5, Section 8.1]), we have w = (1,—-2,—1,2)(3,4, —3, —4), which is a product of
two Coxeter elements of the two type B, reflection subgroups consisting of those signed
permutations supported on {£1, £2} and {£3, £4} respectively. In W’ the unique cycle
decomposition of w has two factors x; = (1,—2,—1,2), x = (3,4, —3,—4). Note that
neither x; nor x; lies in W.
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